Processing Aquatic Invertebrates

Version 2011-07-05

July 2011
Acknowledgements
The present document was developed by Robert Hinchliffe. Appendix 5: Coarse Level Identification Guide for Aquatic Invertebrates, is modeled after the Ontario Benthos Biomonitoring Network (OBBN) Bug Identification PowerPoint originally created by Chris Jones. The present document incorporates changes suggested during peer review. Numerous technicians and managers also provided feedback during development and testing of the protocols. Updates to this document were incorporated by Robert Hinchliffe and Jim Schieck.

Disclaimer
These standards and protocols were developed and released by the ABMI. The material in this publication does not imply the expression of any opinion whatsoever on the part of any individual or organization other than the ABMI. Moreover, the methods described in this publication do not necessarily reflect the views or opinions of the individual scientists participating in methodological development or review. Errors, omissions, or inconsistencies in this publication are the sole responsibility of ABMI.

The ABMI assumes no liability in connection with the information products or services made available by the Institute. While every effort is made to ensure the information contained in these products and services is correct, the ABMI disclaims any liability in negligence or otherwise for any loss or damage which may occur as a result of reliance on any of this material. All information products and services are subject to change by the ABMI without notice.

Use of this Material: This publication may be reproduced in whole or in part and in any form for educational, data collection or non-profit purposes without special permission from the ABMI, provided acknowledgement of the source is made. No use of this publication may be made for resale without prior permission in writing from the ABMI.

Contact Information
If you have questions or concerns about this publication, you can contact:
ABMI Information Centre
CW-405 Biological Sciences Centre
University of Alberta
Edmonton, Alberta, Canada, T6G 2E9
Phone: (780) 492-5766
E-mail: abmiinfo@ualberta.ca
Table of Contents

Summary .. 4
Data Management ... 5
 - Data Entry During Sorting ... 5
 - Checking and Storing Data During Sorting .. 5
 - Transferring Data from the Sorting Location to a Secure Location ... 5
 - Data Entry During Expert Identification ... 5
 - Transferring Data from the Taxonomic Expert to the ABMI Information Center 5
Specimen Management ... 6
 - Specimen Transfer from the Field to the Sample Processing Center ... 6
 - Changing Preservative in Sample Bottles .. 6
 - Specimen Transfer from the Sample Processing Center to the Sorting Facility 6
 - Specimen Transfer from the Sorting Facility to the Sample Processing Center 7
 - Specimen Transfer from the Sample Processing Center to the Taxonomic Expert 7
 - Specimen Transfer from the Taxonomic Expert to the Sample Processing Center 7
 - Long-term Specimen Curation at the RAM ... 7
Sample Processing ... 8
 - Supervision of Aquatic Invertebrate Sorting .. 8
 - Specimen Elutriation .. 8
 - Quality Control .. 9
 - Sorting to Taxonomic Groups .. 10
 - Unique/Mature Organism Search ... 12
 - Week 1: Training ... 13
 - Week 2: Training ... 14
 - Weeks 3 & 4: ... 15
 - Taxonomic Nomenclature ... 15
Advanced Identification of Specimens .. 15
 - Selecting the Expert .. 15
 - Identifying the Aquatic Invertebrate Specimens .. 16
 - Verification Process .. 16
 - Specimen Storage .. 16
 - Species References/Authorities .. 17
References .. 18
Appendix 1: Data Sheets Used By Field Staff During Picking And Sorting ... 19
Appendix 2: Aquatic Invertebrate Sorting Database .. 20
Appendix 3: Sample Tracking Log ... 21
Appendix 4: Sample Shipping Checklist .. 22
Appendix 5: Coarse Level Identification Guide for Aquatic Invertebrates .. 23
Summary

This document describes the procedures, training, and resource materials used to process and identify aquatic invertebrates for the ABMI. A two step process is implemented to identify aquatic invertebrates. First, field crews spend the month of August in the lab, sorting the specimens into coarse taxonomic groups. Technicians receive training so they can effectively separate aquatic invertebrates from debris and sediment, and sort the target specimens into coarse taxonomic groups. Training and quality control are conducted by a qualified lab supervisor. By having lab technicians remove the debris from the samples and sorting the specimens into groups, less work is required by experts. Secondly, three taxonomic groups from rivers (Ephemeroptera, Plecoptera, Trichoptera), and eight taxonomic groups from wetlands (Gastropoda, Ephemeroptera, Anisoptera, Zygoptera, Trichoptera, Hemiptera, Coleoptera, and Chironomidae) are sent to experts and identified to the lowest taxonomic level possible.
Data Management

Data Entry During Sorting
Lab technicians are responsible for filling information into electronic spread-sheets (Appendix 1) while picking and sorting specimens. All spread-sheet fields must have information recorded – even if it is a “zero” or “variable not applicable”. If information from a sample or specimen cannot be described using existing categories on the data sheet, then the lab supervisor is notified and an appropriate solution developed.

Checking and Storing Data During Sorting
Spread-sheets are checked for accuracy during the sorting process each time sample residue and picked organisms are checked as part of quality control. Spread-sheets are transferred to the lab supervisor once the sorting for an individual site has been completed. The lab supervisor checks to ensure that all information is recorded accurately and that all data fields are filled in. The spread-sheet is then locked (using the protect worksheet function) and the results transferred to the Aquatic Invertebrate Sorting Database (Appendix 2). At the conclusion of the sorting session, the lab supervisor checks to ensure that spread-sheets for all ABMI sites are present. Spread-sheets and the Aquatic Invertebrate Database are stored on a secure computer with a back-up stored in a different building.

Transferring Data from the Sorting Location to a Secure Location
At the end of a shift, data files are transferred by the lab supervisor to a secure office and backed up to a computer in a different building.

Data Entry During Expert Identification
The ABMI lab coordinator sends an electronic copy of the Aquatic Invertebrate Sorting Database (Appendix 2) to the taxonomic expert. The taxonomic expert fills in the required information (gray columns) as specimens are identified. The total number of specimens identified for each sorted group is entered in the Advanced ID Count column. If more than one species is identified for a sorted group, the expert inserts a new row below the original row and records the total number of specimens identified as that species in the Advanced ID Count column (advanced ID counts should total the original coarse sorting count for that group).

Transferring Data from the Taxonomic Expert to the ABMI Information Center
Once the advanced ID has been completed, the expert returns the completed electronic copy of the Aquatic Invertebrate Sorting Database to the ABMI lab coordinator. A hard copy is also printed and sent to the lab coordinator along with the identified samples. The lab coordinator checks the database for omissions or errors, stores it on a secure computer with a back-up stored in a different location, sends a copy of the database to the ABMI Information Center, and records the data transfer in the Sample Tracking Log.
Specimen Management

To ensure that samples are not lost, all specimens received by the Sample Processing Center (RAM) are tracked using the Sample Tracking Log (Appendix 3). All subsequent transfers of specimens, samples and data are recorded in the log.

Specimen Transfer from the Field to the Sample Processing Center

- At the end of each field shift, sample bottles containing aquatic invertebrates are packaged into cardboard boxes by field crews, the sample information recorded onto a Sample Shipping Checklist (Appendix 4), and the boxes shipped via courier to the Sample Processing Center (see Wetland and River Protocols for Aquatic Invertebrates for more information).
- Samples are logged-in when they arrive at the Sample Processing Center. Each shipment is assigned a lot number, and the contents of each lot are tracked by that number.
- The Sample Tracking Log includes information about the date the lot arrived, the location where the samples are stored, the ABMI sites where the samples were collected, the number of samples of each type in the lot, and a detailed listing of the information about each sample.
- The ABMI lab coordinator ensures that all aquatic invertebrate sample bottles from each ABMI site are present in the storage facility and recorded in the sample tracking log.

Changing Preservative in Sample Bottles

- To maintain quality of the aquatic invertebrate specimens, preservative in the sample bottles is changed from formalin to ~70% ethanol between 4 and 14 days after the invertebrates are collected.
- Wearing gloves and safety glasses, remove the lid from the sample bottle, cover the opening with 500 μm mesh and secure it in place with a modified lid containing a large hole cut in the center.
- Decant the formalin into a temporary holding container (this is a precaution in case the lid falls off or does not seal properly) removing as much of the formalin as practical.
- Backwash the through the mesh with a small amount of 70% ethanol to dislodge any organisms that may be adhering to the mesh.
- Remove the lid and mesh, and carefully check that all organisms have been washed from the mesh back into the sample bottle. If there are organisms still adhering to the mesh, use 70% ethanol to carefully wash them back into the sample bottle.
- If the sample bottle is 1/3 or more full of organic debris and/or sediment, top up the bottle with 95% ethanol.
- If the sample bottle is less than 1/3 full of organic debris and/or sediment, top up the bottle with 70% ethanol.
- Tightly secure the original lid on the sample bottle, wipe down the outside of the bottle and apply the lot number and ethanol workplace safety labels.
- Pour the used formalin into the waste solution container, rinse the mesh and temporary holding container, and repeat with the next sample bottle.
- The lab coordinator ensures all samples are labeled properly. Each sample bottle should have been labeled by the field crews with: ABMI Site, Date, and Collector’s Initials. In addition, there should have been a label (written on waterproof paper) with the same information inside each sample bottle. If any of this information is missing, the lab coordinator adds it.
- After the preservative in the aquatic invertebrate sample bottles has been changed from formalin to 70% ethanol, the change is recorded in the sample tracking log.

Specimen Transfer from the Sample Processing Center to the Sorting Facility

- Sample bottles containing aquatic invertebrates are transferred from the Sample Processing Center to the sorting location by the aquatic lab supervisor.
The lab supervisor ensures that all sample bottles for each ABMI site are present at the sorting location, and records the new location, and the date of transfer in the sample tracking log.

Specimen Transfer from the Sorting Facility to the Sample Processing Center
- After aquatic invertebrates have been picked and sorted for all ABMI sites, the aquatic lab supervisor delivers the resulting samples to the Sample Processing Center. Four types of samples are transferred:
 1) Vials with sorted specimens,
 2) Sample bottles with sediment,
 3) Sample bottles with residue, and
 4) Sample bottles with sieved sample
- The ABMI lab coordinator ensures that all samples arrive, and then records the new location and date of transfer in the sample tracking log.

Specimen Transfer from the Sample Processing Center to the Taxonomic Expert
- Vials containing three taxonomic groups from rivers (Ephemeroptera, Plecoptera, Trichoptera,) and eight taxonomic groups from wetlands (Gastropoda, Ephemeroptera, Anisoptera, Zygoptera, Trichoptera, Hemiptera, Coleoptera, and Chironomidae) are sent to an expert aquatic invertebrate taxonomist for identification to genus/species.
- Samples vials are packed within an inner carton, absorbent material, plastic liner, foam packing and an external cardboard box. Boxes are labelled and shipped by courier in accordance with current TDG regulations.
- The ABMI lab coordinator records the new location and the date of transfer in the sample tracking log.

Specimen Transfer from the Taxonomic Expert to the Sample Processing Center
- All specimens and materials received from the Sample Processing Center are returned after species have been identified.
- Samples are packed and shipped in the same manner as listed above.
- The ABMI lab coordinator checks to ensure that all samples have been returned and are properly labelled. Samples are organized and boxed for storage at the Sample Processing Center.
- The ABMI lab coordinator records the new location and the date of transfer in the sample tracking log.

Long-term Specimen Curation at the RAM
- All specimens and residual materials collected by the ABMI are gifted to, and where appropriate curated by, RAM.
- RAM retains all ABMI materials for 2 years. This includes specimens sorted to genus/species, specimens sorted to broad taxonomic groups, and residual material including non-sorted specimens and debris.
- After 2 years, reference specimens from each genus/species (or taxonomic group if the specimens were not identified to genus/species) and training specimens are retained by the RAM for use by the ABMI. All other ABMI specimens can be loaned, traded, distributed, or disposed as the RAM see fit.
- A policy describing the procedure RAM will use to loan and gift ABMI specimens is under development.
Sample Processing

This protocol is designed to extract aquatic macro-invertebrates from the samples collected in the field, and determine the presence and abundance for these species.

Laboratory Equipment

- Safety equipment (lab coat, nitrile gloves, safety goggles)
- Dissecting microscope (10-40X) w/ cold (fiber optic) light source
- Extraction equipment (forceps, eye dropper, bulb syringe, scoopula)
- Sorting equipment (fine forceps, Petri dishes, 12-cell plates, tally counters)
- ABMI Lab Protocols Manual
- Reference specimens
- Marchant box
- Scale (1 per lab)
- Storage vials & stoppers
- Ethanol & wash bottles
- 2.80 mm & 500 µm sieves
- Air stones, tubing & pump
- Coarse screen recovery box (modified litter pan)
- 4 L & 10 L buckets
- Plastic pans & Ice cube trays
- Random numbers table
- Administrative tools (data sheets, vial labels etc.)
- Computer or calculator

Supervision of Aquatic Invertebrate Sorting

- A qualified lab supervisor oversees all stages of training, specimen picking and sorting by field staff.
- To be classified as a qualified lab supervisor, the person must have:
 1. More than 1 year’s experience identifying aquatic invertebrates found in Alberta.
 2. Worked with the RAM appointed aquatic invertebrate expert for at least two days to ensure that the invertebrate sorting will be effective for the expert.
 3. Successfully completed an exam by identifying representative specimens from the coarse groups of aquatic invertebrates that are sorted for the ABMI (Appendix 4). The exam consists of at least 100 specimens (with at least one specimen from each of the 31 taxonomic groups). More than >95% of the specimens on the test must be identified correctly.

Specimen Elutriation

- Ensure that all bottles collected at the ABMI site are present.
- Pour and rinse each sample bottle through a 500 µm sieve. Deposit the sieved material into a 10 L bucket and dump the used preservative into the waste solution container.
- When the last bottle from the site has been sieved, thoroughly rinse the sieve into the bucket to create a composite sample.
- For ABMI sites that contain large quantities of sediment, it is more efficient to process a few bottles at a time rather than trying to process them all at once.
- If all sample bottles from a site contain minimal vegetation or sediment, the samples can simply be rinsed through the 500 µm sieve without going through the complete elutriation process.
- Set up the elutriation components (see Figure 1 & 2).
- Run the elutriation process starting with a gentle flow, picking out and “washing” any coarse debris in the sorting/washing pan; save the coarse debris in a separate 4 L pail. Air stones are used in the 10 L bucket.
and/or the sorting/washing pan to help break up matted coarse debris and float organisms through the system. Run the elutriation process until the water is clear, or all of the coarse debris has been picked out & “washed”.

- Periodically check the 500 µm sieve to make sure it does not become clogged and overflow in the sink. If the sieve is getting plugged, gently rinse as much fine material through the sieve as you can, and deposit the remaining material in the Marchant box before continuing with the elutriation process.
- Collect three 25 gram sub-samples from different locations throughout the sediment remaining in the 10 L bucket and/or coarse debris in the 4 L pail. If both types of “sediment” are present, select a total of three sub-samples based on the proportion of each type present.
- If >30 invertebrates are seen in the combined three sub-samples, repeat the above two steps.
- If <30 invertebrates are seen in the combined three sub-samples (and this has been verified by the lab supervisor), place all “sediment” into 1 L or 250 ml sample bottles (containing 70% ethanol) and labelled with the RAM lot number, ABMI site number, number of bottles, and the word “sediment”, before proceeding to the sorting phase.

Quality Control

- After field staff have completed elutriation for an ABMI site and checked the sediment for completeness, they submit the sediment sub-samples to the lab supervisor for inspection.
- The lab supervisor examines the “sediment” under a dissecting microscope (for exactly 2 minutes) and tallies the number of invertebrates seen.
- If the total number of invertebrates observed in the combined three sub-samples is >30 or more, field staff are instructed to repeat the elutriation process.
Figure 1: Schematic of elutriation components.

Figure 2: Photo of elutriation components.

Sorting to Taxonomic Groups

- Rinse the elutriated material from both the 2.80 mm and 500 µm sieves into a Marchant box and add enough water to just fill each of the 100 separate cells.
- Ensure that all sieves and elutriation components are completely clean before continuing with the sorting process.
- Clamp down the lid of the Marchant box, carefully invert the box, and gently swirl the water and elutriated material.
- Quickly and smoothly flip the box upright, and agitate gently to allow the material to settle into the cells.
- If the distribution of material in the Marchant box cells appears to be uneven, repeat the above two steps.
- Remove the lid and carefully inspect it to make sure that no organisms are adhering to the lid or caught in the seal. Rinse any trapped organisms into random cells of the Marchant box.
- Organisms that have not settled into a specific cell are considered to be in the cell over which the majority of the organism is located.
- Vegetation hanging over the wall of a cell is carefully cut along the cell wall so that the portions over each cell remain in the appropriate cell.
- Use a random numbers table to select a cell, and transfer the contents of that cell to a Petri dish. Be careful to ensure that all specimens are transferred from the cell to the Petri dish.
- Most aquatic invertebrate taxa encountered in the sample are classified as primary organisms (Table 1).
Specimens from the groups Porifera, Hydrozoa, Nematoda, Platyhelminthes, Cladocera, Ostracoda, and Copepoda are classified as secondary organisms (Table 1). These taxa are not considered part of the macro-invertebrate community and can be very prolific in some samples. If they were included as part of the 350 primary organisms few specimens from the target taxa would be collected.

The goal is to collect and sort at least 300 primary organisms that can be identified to genus/species, from each ABMI site. Since a portion of the sorted organisms may be immature or missing key features needed to identify them to genus/species, and these key features are not completely understood by sorting staff, a total of 350 undamaged primary specimens are collected/sorted.

Table 1. Macro invertebrate taxa categorized based on whether they are primary or secondary organisms.

<table>
<thead>
<tr>
<th>Primary Organisms *</th>
<th>Secondary Organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligochaeta (aquatic worms)</td>
<td>Porifera (sponges)</td>
</tr>
<tr>
<td>Hirudinea (leeches)</td>
<td>Hydrozoa (hydras)</td>
</tr>
<tr>
<td>Gastropoda (snails & limpets)</td>
<td>Platyhelminthes (flatworms)</td>
</tr>
<tr>
<td>Pelecypoda (clams)</td>
<td>Nematoda (roundworms)</td>
</tr>
<tr>
<td>Hydrachnida (aquatic mites)</td>
<td>Cladocera (water fleas)</td>
</tr>
<tr>
<td>Amphipoda (scuds)</td>
<td>Ostracoda (seed shrimp)</td>
</tr>
<tr>
<td>Isopoda (sow bugs)</td>
<td>Copepoda (copepods)</td>
</tr>
<tr>
<td>Decapoda (crayfish)</td>
<td></td>
</tr>
<tr>
<td>Ephemeroptera (mayflies)</td>
<td></td>
</tr>
<tr>
<td>Anisoptera (dragonflies)</td>
<td></td>
</tr>
<tr>
<td>Zygoptera (damselflies)</td>
<td></td>
</tr>
<tr>
<td>Plecoptera (stoneflies)</td>
<td></td>
</tr>
<tr>
<td>Hemiptera (true bugs)</td>
<td></td>
</tr>
<tr>
<td>Megaloptera (fishflies, alderflies)</td>
<td></td>
</tr>
<tr>
<td>Lepidoptera (aquatic moths)</td>
<td></td>
</tr>
<tr>
<td>Trichoptera (caddisflies)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera (beetle adult)</td>
<td></td>
</tr>
<tr>
<td>Coleoptera (beetle larva)</td>
<td></td>
</tr>
<tr>
<td>Chironomidae (midges)</td>
<td></td>
</tr>
<tr>
<td>Ceratopogonidae (no-see-ums)</td>
<td></td>
</tr>
<tr>
<td>Tabanidae (horse flies)</td>
<td></td>
</tr>
<tr>
<td>Tipulidae (crane flies)</td>
<td></td>
</tr>
<tr>
<td>Culicidae (mosquitoes)</td>
<td></td>
</tr>
<tr>
<td>Chaoboridae (phantom midges)</td>
<td></td>
</tr>
<tr>
<td>Simulidae (black flies)</td>
<td></td>
</tr>
<tr>
<td>Other Diptera (true flies)</td>
<td></td>
</tr>
</tbody>
</table>

Using a 10-40x microscope with a cold (fiber-optic) light source, systematically sort through the contents of the Petri dish.

Using tweezers transfer undamaged primary organisms into separate holding containers, sorting the specimens to the degree outlined in Appendix 5: Coarse Level Identification Guide for Aquatic Invertebrates.

Secondary organisms are left in the residue and are not counted.

Pupae, exuvia, terrestrial organisms, and empty shells and Trichoptera cases are left in the residue and are not counted.

Damaged primary organisms are placed in a separate holding container and tallied at the completion of each cell. Record the number of damaged organisms on the laboratory data sheet. Organisms are considered damaged if:
- One or more major body regions (i.e. head, thorax or abdomen) are missing and/or mangled, or
- Key features needed to determine the coarse taxonomic group are missing, and other specimens (to which the specimen in question can be compared) that do possess the key features needed to determine the coarse group, are absent from the sample.

• Once the contents of the Petri dish have been completely searched, tally the total number of undamaged primary organisms in each coarse group and record the number of individuals on the laboratory data sheet.
• Submit the residue and identified organisms to the lab supervisor for verification.
• Transfer the sorted organisms into vials filled with 70% ethanol. Ensure that specimens are not “lost” during this transfer process.
• Label the vials by inserting a waterproof label containing information on the coarse taxonomic group name, RAM lot number, ABMI site number, date collected, collector’s name, and sorters’ name.
• As aquatic invertebrates from each ABMI site are picked and sorted, the number of specimens found for each taxonomic group are recorded onto data sheets (see Appendix 1 for a copy of the data sheets).
• If fewer than 350 undamaged primary organisms have been sorted, then randomly select the next cell from the Marchant box and process that cell. Continue this process until 350 undamaged primary organisms, or all 100 cells in the Marchant box, have been sorted.
• If a total of 350 undamaged primary organisms are reached in the middle of sorting a cell, complete that cell before stopping.
• Note that some wetlands are dominated by secondary organisms; samples from these sites may contain less than 350 primary organisms even after sorting all 100 cells.
• If after sorting a few cells it is apparent that there will be less than 350 primary organisms in the entire site, and the amount of sediment in the sample will allow it, the entire contents of the Marchant box can be transferred to a small plastic tray and the remainder of the site sorted in its entirety.
• The remaining contents of each Petri dish are combined in a single 250 ml bottle or 20 ml vial, preserved (in 70% ethanol), and labelled with the RAM lot number, ABMI site number and the word “Residue”.

Unique/Mature Organism Search
• If at the conclusion of the sorting process there is still unsorted sample material in the Marchant box, conduct a unique/mature organism search on the remaining unsorted sample.
• Transfer the remaining contents of the Marchant Box to a shallow white plastic pan.
• Ensure the pan is located where there is good lighting.
• Set a timer for 60 seconds – start the timer and begin visually searching the sample (i.e. without the use of a microscope) for any unique/mature primary organisms.
• Transfer any unique/mature primary organisms to a separate holding container – they do not need to be separated into coarse groups.
• Throughout the searching process the focus is on picking as many unique/mature primary organisms as possible within the time allotted, while adhering to the following criteria:
 • Pick unique organisms that do not appear to be similar to other organisms that have already been sorted from the sample.
 • Pick mature organisms that appear to be similar to other organisms that have been sorted from the sample but have well developed wing pads, aquatic adult characters, and/or are much larger.
• If all of the unique/mature organisms appear to have been picked before the 60 second time period has expired, continue to search the sample until the full 60 seconds has elapsed
• At the conclusion of the unique/mature organism search have the lab supervisor inspect the pan and picked material for quality control.
• Transfer all of the picked organisms to a single sample container filled with 70% ethanol. Label this container with the RAM lot number, ABMI site number and the words “Augmented Specimens”.
• Once the ABMI site has been completed, the remainder of the unsorted sample is preserved in a 1 L or 250 ml bottle (containing 70% ethanol) and labelled with the RAM lot number, ABMI site number and the words “Sieved Sample”.

PROCESSING AQUATIC INVERTEBRATES VERSION 2011-07-05
• Before proceeding to the next ABMI site, ensure that the Marchant box, lid, and large plastic pan have been completely cleaned.

Week 1: Training

Day 1: Goals and Expectations

- Field staff have a basic understanding of specimen extraction using the elutriation technique and are able to set up and run the process with minimal assistance.
- Field staff are familiar with the layout and content of the Appendix 5: Coarse Level Identification Guide For Aquatic Invertebrates, and have basic search images of the target organisms.
- Field staff have a basic understanding of proper specimen picking and handling techniques, data recording and labelling methods, and the criteria for not counting organisms based on damage or level of development (i.e. pupae, exuvia etc.).
- By the end of day 1, each field staff member will have taken their first ABMI site to at least the end of the specimen extraction process.

Training:

Lab Safety

1. Review lab safety protocols

Aquatic Invertebrate Sorting and Identification

1. Read Appendix 5: Coarse Level Identification Guide For Aquatic Invertebrates
2. Review reference collection

Specimen Extraction

1. Read Preliminary Specimen Picking and Sorting by Field Staff (Pages 8-12 in this manual)
2. Watch a demonstration and practice the elutriation process
3. If there is time, start picking aquatic invertebrates from an ABMI site

Quality Control

- After picking and sorting specimens from of a cell in the Marchant box, field staff submit the picked residue, and identified organisms from that cell, to the lab supervisor for quality control.
- The lab supervisor inspects the residue and organisms to evaluate whether ABMI accuracy targets have been achieved. These targets are:
 - at least 95% of the total primary organisms have been picked from each cell, and
 - at least 95% of the picked organisms have been correctly identified.

Days 2-5: Goals and Expectations

- Field staff are more familiar with specimen extraction using the elutriation technique and are able to set up and run the process unassisted.
- Field staff are more familiar with handling and picking aquatic invertebrates and data recording, to the extent that they are able to perform these tasks unassisted.
- Field staff are able to label bottles and vials in the required format.
- Through inspections by the lab supervisor, field staff will pick and sort aquatic invertebrates such that < 5% of the total primary organisms remain in the picked residue of each cell, and at least 95% of the picked organisms are correctly identified.
- As a minimum, by the end of day 2, each field staff member should have taken their first ABMI site to a point where at least 50% of the required organisms/cells have been picked.
• As a minimum, by the end of day 3, each field staff member should have completed their first ABMI site.
• As a minimum, by the end of day 4, each field staff member should have taken their second ABMI site through the specimen extraction process and should have picked at least 33% of the required organisms/cells from that site.
• As a minimum, by the end of day 5, each field staff member should have completed their second ABMI site.

Training:
Aquatic Invertebrate Sorting and Identification
1. Sort through the material from each cell (as described above) in a systematic manner
2. Identify picked aquatic invertebrates using:
 o Appendix 4: Coarse Level Identification Guide For Aquatic Invertebrates
 o Reference collection
 o Collaboration with more knowledgeable colleagues and the lab supervisor
3. Submit picked residue and identified organisms to the lab supervisor for quality control prior to moving on to the next cell (see Quality Control Process)

Quality Control
• After picking and sorting specimens from one cell in the Marchant box, field staff submit the picked residue, and identified organisms from that cell, to the lab supervisor for quality control.
• The lab supervisor inspects the residue and organisms of the first cell to evaluate whether ABMI accuracy targets have been achieved. These targets are:
 o at least 95% of the total primary organisms have been picked from each cell, and
 o at least 95% of the picked organisms have been correctly identified.
• If the verified cell meets ABMI accuracy targets, then the lab supervisor uses a random number table to choose one out of every three cells from each site for inspection.
• If at any time a cell does not meet ABMI accuracy targets (i.e., field staff that have >5% error), then the cell in question, and all of cells they have completed subsequent to the previous successful inspection, are re-worked by the technician.

Week 2: Training
Goals and Expectations
• Sort through at least 3 more ABMI sites and identify aquatic invertebrates to the 31-group coarse level.
• Sort specimens such that <5% of the total primary organisms remain in the picked residue of each cell, with at least 95% accuracy of specimen identification.
• Submit picked residue and identified organisms to the lab supervisor for quality control prior to moving on to the next cell (see Quality Control Process).
• By the end of day 10, each ABMI field staff member should have completed the sorting and identification on at least 5 ABMI sites.

Quality Control
• The lab supervisor randomly chooses one out of every five cells from each ABMI site and inspects the residue and specimens for accuracy. Accuracy targets are:
 o at least 95% of the total primary organisms have been picked from each cell, and
 o at least 95% of the picked organisms have been correctly identified.
• If at any time a cell does not meet ABMI accuracy targets (i.e., field staff that have >5% error), then the cell in question, and all of cells they have completed subsequent to the previous successful inspection, are re-worked by the technician.

Weeks 3 & 4:

Goals and Expectations
- Sort and identify aquatic invertebrates to the 31-group coarse level at a rate of at least 1 ABMI site/day.
- Sort specimens such that < 5% of the total primary organisms remain in the picked residue of each cell, with at least 95% accuracy of specimen identification.
- Submit picked residue and identified organisms to the lab supervisor for quality control prior to moving on to the next cell (see Quality Control Process).
- By the end of day 15, each field staff member should have completed the sorting and identification for at least 10 ABMI sites.
- By the end of day 20, each field staff member should have completed the sorting and identification on at least 15 ABMI sites.

Quality Control
- The lab supervisor randomly chooses one out of every ten cells from each ABMI site and inspects the residue and specimens for accuracy. Accuracy targets are:
 - at least 95% of the total primary organisms have been picked from each cell, and
 - at least 95% of the picked organisms have been correctly identified.
- If at any time a cell does not meet ABMI accuracy targets (i.e., field staff that have >5% error), then the cell in question, and all of cells they have completed subsequent to the previous successful inspection, are re-worked by the technician.

Taxonomic Nomenclature

Advanced Identification of Specimens
- Three taxonomic groups from rivers (Ephemeroptera, Plecoptera, Trichoptera,) and eight taxonomic groups from wetlands (Gastropoda, Ephemeroptera, Anisoptera, Zygoptera, Trichoptera, Hemiptera, Coleoptera, and Chironomidae) are sent to an expert aquatic invertebrate taxonomist for identification to the lowest taxonomic level possible.

Selecting the Expert
- The ABMI will select experts who are known specialists in the field of aquatic invertebrate taxonomy. To ensure the highest of standards, and to maintain ABMI’s level of credibility, the ABMI will only select experts who can meet at least one of the following criteria:
 1. Expert is endorsed by the Royal Alberta Museum, or an associated museum (e.g., Canadian Museum of Nature), as capable of identifying aquatic invertebrates with ≥95% accuracy.
 2. Expert is endorsed by 2 members of the scientific community, recognized in the field of aquatic invertebrate taxonomy, as capable of identifying aquatic invertebrates with ≥95% accuracy.
• In addition, expert aquatic invertebrate taxonomists require level 2 (to genus) taxonomic certification by the North American Benthological Society (NABS) for the taxonomic groups they will be identifying.

Identifying the Aquatic Invertebrate Specimens
• All specimens are to be identified to the lowest taxonomic level possible. Species names must be determined based on the Species References/Authorities listed below.
• RAM maintains the taxonomic keys, and if there is discrepancy between keys determines their order of precedence.
• If additional reference literature is needed to determine the species name, the expert will note this additional literature in the database.
• Specimens must be identified with $\geq 95\%$ accuracy.
• Whenever possible, specimens are to be identified to species.
• Specimens from each sample vial are examined, identified, and the species name written directly on the back of the original label (or a separate slip of paper) along with the identification date and expert’s initials, and inserted into the vial.
• If more than one taxonomic group is present in a sample vial, a new vial is created for each additional group and labeled with the ABMI site number, species name, identification date, and expert’s initials.
• Isolate a voucher specimen for every unique species/taxon identified, and label the new vial as indicated above with the word “Voucher” on the label.
• Experts will also enter all required information in the Aquatic Invertebrate Sorting Database (Appendix 2).
• Specimens from the unique/mature organism search are maintained in separate vials and entered into a separate database for “Augmented Specimens”.
• The expert will ship the specimens back to the Sample Processing Center, via the method above, and e-mail a digital copy of the Aquatic Invertebrate Sorting Database to the ABMI lab coordinator.

Verification Process
• Specimens that have been identified by experts will undergo a verification process by their peers to ensure accuracy.
• For each expert identifying ABMI aquatic invertebrates, 10% of the identified specimens (up to a maximum of 200) will be randomly selected for verification. Note that at least one randomly selected specimen from each species (or higher taxonomic group if the specimens are not identified to species) will be included.
• The ABMI lab coordinator will re-label each specimen with a reference number and send the specimens to a second expert that meets the above credibility criteria.
• The second expert will identify the specimens and record the species name beside the matching reference number on a provided data sheet.
• The second expert will ship the specimens back to the ABMI, and email the data sheet to the ABMI lab coordinator.
• The ABMI lab coordinator will compare the data between the two experts.
• Discrepancies are reviewed by both experts (plus additional experts if necessary) to determine the identification based on the most recent literature. If a discrepancy cannot be resolved, the specimen in question will be recorded in the database at the lowest taxonomic level that is agreed upon by the experts.
• If, after all discrepancies have been resolved, there is $\geq 5\%$ error on the part of the initial taxonomic expert, then the genera/species with $\geq 5\%$ mis-identifications are highlighted. All individuals the initial expert identified from the highlighted species are re-identified to confirm their identity.

Specimen Storage
• All specimens are stored in the vials for 2 years.
• After 2 years, all specimens are given to the Royal Alberta Museum.
• The ABMI will retain vouchers and enough reference specimens of each species plus additional specimens for training purposes.

Species References/Authorities

References

Appendix 1: Data Sheets Used By Field Staff During Picking And Sorting

Alberta Biodiversity Monitoring Institute

Aquatic Invertebrates

Sorting to Groups

<table>
<thead>
<tr>
<th>Marchant Cell Number</th>
<th>Total/Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligochaeta</td>
<td>0</td>
</tr>
<tr>
<td>Hirudinea</td>
<td>0</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>0</td>
</tr>
<tr>
<td>Pelecypoda</td>
<td>0</td>
</tr>
<tr>
<td>Hydrochida</td>
<td>0</td>
</tr>
<tr>
<td>Amphipoda</td>
<td>0</td>
</tr>
<tr>
<td>Isopoda</td>
<td>0</td>
</tr>
<tr>
<td>Decapoda</td>
<td>0</td>
</tr>
<tr>
<td>Ephemeroptera</td>
<td>0</td>
</tr>
<tr>
<td>Anisoptera</td>
<td>0</td>
</tr>
<tr>
<td>Zygoptera</td>
<td>0</td>
</tr>
<tr>
<td>Plecoptera</td>
<td>0</td>
</tr>
<tr>
<td>Hemiptera</td>
<td>0</td>
</tr>
<tr>
<td>Megaloptera</td>
<td>0</td>
</tr>
<tr>
<td>Lepidoptera</td>
<td>0</td>
</tr>
<tr>
<td>Trichoptera</td>
<td>0</td>
</tr>
<tr>
<td>Coleoptera (adults)</td>
<td>0</td>
</tr>
<tr>
<td>Coleoptera (larvae)</td>
<td>0</td>
</tr>
<tr>
<td>Chironomidae</td>
<td>0</td>
</tr>
<tr>
<td>Ceratopogonidae</td>
<td>0</td>
</tr>
<tr>
<td>Tabanidae</td>
<td>0</td>
</tr>
<tr>
<td>Tipulidae</td>
<td>0</td>
</tr>
<tr>
<td>Culicidae</td>
<td>0</td>
</tr>
<tr>
<td>Chaoboridae</td>
<td>0</td>
</tr>
<tr>
<td>Simuliidae</td>
<td>0</td>
</tr>
<tr>
<td>Other Diptera</td>
<td>0</td>
</tr>
<tr>
<td>Other:</td>
<td>0</td>
</tr>
<tr>
<td>Damaged Organisms</td>
<td>0</td>
</tr>
<tr>
<td>Primary Organisms</td>
<td>0</td>
</tr>
<tr>
<td>Marchant Cells Counted</td>
<td>0</td>
</tr>
<tr>
<td>Unique/Mature Search</td>
<td>0</td>
</tr>
</tbody>
</table>

ABMI Site #:___________

Year:_______

Processing Aquatic Invertebrates Version 2011-07-05
Appendix 2: Aquatic Invertebrate Sorting Database

Sample Collection Data

<table>
<thead>
<tr>
<th>RAM Lot No.</th>
<th>ABMI Site Number</th>
<th>Collected By</th>
<th>Field Collection Date</th>
<th>Field Crew Comments</th>
<th>Sorted By</th>
<th>Date Sorted</th>
<th>Coarse Sorting Group</th>
<th>Coarse Sorting Count</th>
<th>Number of Cells Counted in Marchant Box</th>
<th>Lab Comments</th>
<th>Sample Disposition</th>
<th>Voucher Box #</th>
<th>Residual Box #</th>
<th>Advanced ID Box #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Advanced Identification Data

<table>
<thead>
<tr>
<th>Identified By</th>
<th>Identification Date</th>
<th>Family (Sub-family for Chironomidae)</th>
<th>Genus & Species</th>
<th>Life Stage</th>
<th>Advanced ID Count</th>
<th>Reference Used</th>
<th>Advanced ID Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix 3: Sample Tracking Log

Note: This is a portion of the complete Sample Tracking Log that shows only the columns relevant to the receiving and processing of aquatic invertebrate samples.

<table>
<thead>
<tr>
<th>RAM ACCESSION INFO</th>
<th>ABMI SAMPLE COLLECTION INFO</th>
<th>AQUATIC INVERTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Series Count</td>
<td>Project</td>
<td>RAM Lot #</td>
</tr>
<tr>
<td></td>
<td>Year</td>
<td>Date Received</td>
</tr>
<tr>
<td></td>
<td>Group</td>
<td>Sample Type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Site #</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Subsite</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Collector</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Date Collected</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expected Number</td>
</tr>
<tr>
<td></td>
<td></td>
<td>of Sample Bottles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of Sample</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottles Received</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Formalin to Ethanol Date</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DISPOSITION

<table>
<thead>
<tr>
<th>Data Transferred to Database</th>
<th>Samples Sent for Sorting</th>
<th>Samples Returned from Sorting</th>
<th>Samples Sent for Advanced ID or Processing</th>
<th>Samples Returned from Advanced ID or Processing</th>
<th>Database Sent to Information Center</th>
<th>Current Sample Disposition</th>
<th>Current Residual Disposition</th>
<th>Samples Transferred to RAM's TMS</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Appendix 4: Sample Shipping Checklist

Sample Shipping Checklist
Aquatic Protocol – Wetlands

Crew ID: _______________ Site Block #: __________ Sites Completed in Block: ____of____
Shipping Date: __________ Shipping Method: ____________ Waybill #: __________________________
Type and Total # of Containers: __

Complete one sheet for each site block in the shipment. Complete one section for each site completed in the block.
You must fill in all fields in each completed section - Record "VNA" for any fields that do not apply.
If shipping by Bus or Courier, save a copy of your waybill for future reference. If dropping off at RAM – enter the date samples are dropped off as the shipping date, enter “Delivered” as the shipping method, and enter the initials of the person dropping it off as the waybill #.

<table>
<thead>
<tr>
<th>Site #</th>
<th>Field Collection Date</th>
<th>Field Crew Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Plant Specimens Collected</td>
<td>_______</td>
<td>Plant Press ID</td>
</tr>
<tr>
<td>Water Sample</td>
<td>_______</td>
<td>Collected by: _______</td>
</tr>
<tr>
<td>Comments:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 – Record the total number of unknown vascular plant specimens collected from this site. If no unknown plant specimens were collected, indicate “None”. List unique specimen ID numbers for all unknown plants collected on the appropriate Plant Press Log.
2 – Record the Plant Press ID number where the specimens are located.
3 – List number of water sample bottles. Indicate “None” if the sample was not collected.
4 – List total number of Aquatic Invertebrates samples. Indicate “None” if the sample was not collected.

Note: Any samples listed as “None” must include comments indicating why the sample was not collected.
When recording who collected a sample, record a single set of initials for the person responsible for collecting that sample.
Appendix 5: Coarse Level Identification Guide for Aquatic Invertebrates

Aquatic Invertebrate Identification
(coarse group level)

ABMI Training Manual
Modified from OBBN Training Course
This guide was modeled after the Bug Identification PowerPoint originally developed by Chris Jones and the Ontario Benthos Biomonitoring Network (obbn.eman-rese.ca). BIO-DiTRL and John R. Meyer provided permission to use their photos where indicated. Robert Hinchliffe created all other photographs in the guide. The guide has been reviewed and updated by Sue Salter (Cordillera Consulting).

Physical characteristics of 31 taxonomic groups are described in this guide. These 31 groups were included because they can be separated accurately by people after a few days of training and practice. Characteristics listed in blue are especially important when separating the groups. Training and quality control required to maintain accuracy during identification are describe above.
List of 31 Coarse groups

<table>
<thead>
<tr>
<th>Group</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porifera (sponges)</td>
<td>26</td>
</tr>
<tr>
<td>Hydrozoa (hydras)</td>
<td>27</td>
</tr>
<tr>
<td>Platyhelminthes (flatworms)</td>
<td>28</td>
</tr>
<tr>
<td>Nematoda (roundworms)</td>
<td>29</td>
</tr>
<tr>
<td>Oligochaeta (aquatic worms)</td>
<td>30</td>
</tr>
<tr>
<td>Hirudinea (leeches)</td>
<td>31</td>
</tr>
<tr>
<td>Gastropoda (snails & limpets)</td>
<td>32</td>
</tr>
<tr>
<td>Pelecypoda (clams)</td>
<td>33</td>
</tr>
<tr>
<td>Hydrachnida (aquatic mites)</td>
<td>34</td>
</tr>
<tr>
<td>Cladocera (water fleas)</td>
<td>35</td>
</tr>
<tr>
<td>Ostracoda (seed shrimp)</td>
<td>36</td>
</tr>
<tr>
<td>Copepoda (copepods)</td>
<td>37</td>
</tr>
<tr>
<td>Amphipoda (scuds)</td>
<td>38</td>
</tr>
<tr>
<td>Isopoda (sow bugs)</td>
<td>39</td>
</tr>
<tr>
<td>Decapoda (crayfish)</td>
<td>40</td>
</tr>
<tr>
<td>Ephemeroptera (mayflies)</td>
<td>41</td>
</tr>
<tr>
<td>Anisoptera (dragonflies)</td>
<td>42</td>
</tr>
<tr>
<td>Zygoptera (damselflies)</td>
<td>43</td>
</tr>
<tr>
<td>Plecoptera (stoneflies)</td>
<td>44</td>
</tr>
<tr>
<td>Hemiptera (true bugs)</td>
<td>45</td>
</tr>
<tr>
<td>Megaloptera (fishflies, alderflies)</td>
<td>46</td>
</tr>
<tr>
<td>Lepidoptera (aquatic moths)</td>
<td>47</td>
</tr>
<tr>
<td>Trichoptera (caddisflies)</td>
<td>48</td>
</tr>
<tr>
<td>Coleoptera (beetle adult)</td>
<td>49</td>
</tr>
<tr>
<td>Coleoptera (beetle larva)</td>
<td>50</td>
</tr>
<tr>
<td>Chironomidae (midges)</td>
<td>51</td>
</tr>
<tr>
<td>Ceratopogonidae (no-see-ums)</td>
<td>52</td>
</tr>
<tr>
<td>Tabanidae (horse flies)</td>
<td>53</td>
</tr>
<tr>
<td>Tipulidae (crane flies)</td>
<td>54</td>
</tr>
<tr>
<td>Culicidae (mosquitoes)</td>
<td>55</td>
</tr>
<tr>
<td>Chaoboridae (phantom midges)</td>
<td>56</td>
</tr>
<tr>
<td>Simulidae (black flies)</td>
<td>57</td>
</tr>
<tr>
<td>Other Diptera (true flies)</td>
<td>58</td>
</tr>
</tbody>
</table>
Phylum:

Porifera (Sponges)

“Secondary Organism”

- Morphology and size highly variable (some are small and inconspicuous)
- Color from tan to greenish
- Surface has many small pores; it looks like a sponge
- Usually attached to rocks or woody debris
Class:

Hydrozoa (Hydras)

Secondary Organism

- 2 to 25 mm long (often inconspicuous)
- Clear to whitish; sometimes green
- Simple tube-like body with tentacles
- Asexual reproduction by budding
- Preserved specimens are often brown to orange in color & contracted into a ball
Phylum:

Platyhelminthes (Flatworms)

“Secondary Organism”

- 5 to 20 mm long
- Mottled cream to grayish-brown dorsally; lighter on ventral side
- Flat unsegmented wormlike body with no hairs or setae
- Usually with two simple eye spots but may have several small ones
- Mouth on ventral side; may have extended pharynx
- Preserved specimens may be contracted & curled up
Phylum:

Nematoda (Roundworms)

“Secondary Organism”

- Often <10 mm long
- Variable coloration; body is often translucent
- Simple unsegmented wormlike body with no hairs or setae
- Head usually tapered, tail pointed
Subclass:

Oligochaeta (Aquatic Worms)

- Adults 1 to 30 mm long
- Often pinkish to white or transparent
- **Wormlike segmented body with bundles of hairs or setae on each segment along the body**
- No suckers present
- Usually no eyes but may have a pair of small stemmata and/or a proboscis
Subclass:

Hirudinea (Leeches)

- Adults 5 to 100 mm long
- Color varies; brown, olive and black common; may have color patterns on dorsal surface
- Flat segmented wormlike body with no hair or setae
- Suckers at anterior and posterior ends
- Head often with several pairs of eyes
- Preserved specimens are often contracted and curled
Class:

Gastropoda (Snails & Limpets)

- Adults 2 to 35 mm
- Hard spiral shell; some are saucer-like
- Watch for tiny specimens in bottom of dish
- Do not pick or count empty shells
Class:

Pelecypoda (Clams and Mussels)

- Adults 2 to 250 mm
- Color tan to brown
- Hard oval shell hinged in two halves with apparent growth lines
- No appendages
- Watch for tiny specimens at bottom of dish in sand or gravel
- Do not pick or count empty shells
Subcohort:

Hydrachnida (Mites)

- Adults 1 to 7 mm
- Often brightly colored (red, green, blue, brown)
- One body segment with 4 pairs of segmented legs; look similar to small spiders
- Usually soft bodied but may have sclerotized plates
- Finger-like pedipalps between forelegs
- Simple eyespots and no antennae
Group: **Cladocera** (Water Fleas)

"Secondary Organism"

- Usually less than 10 mm
- **Most of body (excluding head) enclosed in translucent, flexible bivalved carapace**
- 5 or 6 pairs of thoracic appendages
- Usually a prominent pair of branched antennae
- Some may also be enclosed in a gelatinous case and/or lack a carapace
Subclass:

Ostracoda (Seed Shrimp)

“Secondary Organism”

- Usually less than 5 mm
- Color brown to translucent tan
- Entire body (including head) enclosed in a rigid, seed-like bivalved carapace
- 3 pairs of thoracic appendages that may partially protrude from shell
- Carapace without growth lines
Order:

Copepoda (Copepods)

“Secondary Organism”

- Usually less than 5 mm
- Mostly cream to whitish in color
- Semi-cylindrical segmented body with 5 pairs of thoracic appendages and one pair of prominent antennae
- Paired caudal segments with terminal setae
Order:

Amphipoda (Scuds)

- Adults 6 to 20 mm long
- Usually a translucent green or olive brown; preserved specimens may be white to orange
- Laterally compressed and segmented body with 8 pairs of thoracic appendages
- 2 pairs of antennae
Order: **Isopoda** (Sow Bugs)

- 5 to 20 mm long
- Alberta specimens are usually unpigmented
- Dorso-ventrally compressed body with 7 pairs of legs ending in paired claws
- 1st antennae longer than 2nd
Order:

Decapoda (Crayfish)

- 10 to 100 mm long
- Tan to dark brown in color
- Front half of body cylindrical, rear half dorso-ventrally flattened; looks like a small lobster
- Body segments are covered in hard armor plates; 5 pairs of walking legs; first pair with enlarged claws
- 2 pairs of antennae; one long and one short
- Eyes on short stalks
Order:

Ephemeroptera (Mayflies)

- 3 to 30 mm long (not including tails)
- Elongate tapered body with three regions (head, thorax & abdomen) and 3 pairs of jointed thoracic legs
- Dorsal or lateral gills (usually leaf like) on 2 or more abdominal segments and legs ending in single claws
- Usually 3 long segmented tails but sometimes with 2
Suborder:

Anisoptera (Dragonflies)

- 5 to 45 mm long
- Body with three regions (head, thorax & abdomen) and 3 pairs of jointed thoracic legs
- Abdomen is wide and dorsoventrally compressed; large head and eyes with no visible external gills or long segmented tails
- Modified labium for catching prey
Suborder:

Zygoptera (Damselflies)

- 5 to 25 mm long
- Body with three regions (head, thorax & abdomen) and 3 pairs of jointed thoracic legs
- Abdomen is narrow and tubular; large head and eyes with 3 broad gills at terminal end of abdomen
- Modified labium for catching prey
Order:

Plecoptera (Stoneflies)

- 6 to 50 mm long
- Elongate body with three regions (head, thorax & abdomen) and 3 pairs of jointed thoracic legs
- Bushy or simple (finger like) ventral gills may be seen on neck, thorax, first three abdominal segments or at base of tails; legs end in paired claws
- Always 2 segmented tails
Order:

Hemiptera (True Bugs)

- 5 to 40 mm long
- 3 body regions (when viewed from ventral side) and 3 pairs of jointed thoracic legs
- Membranous (“leathery”) forewings covering most or all of the thorax and abdomen
- Sucking mouth parts (rostrum)
- Wings may be absent in immature specimens
Order:

Megaloptera (Fishflies, Alderflies)

- 20 to 75 mm long
- Elongate tapered body with three regions (head, thorax & abdomen) and 3 pairs of jointed thoracic legs
- Lateral abdominal gill filaments with a long tapered terminal abdominal segment or two anal appendages with paired hooks
- Well developed mandibles
Order:

Lepidoptera (Aquatic Moth Larva)

- 10 to 25 mm long
- Caterpillar like body with 3 pairs of short, segmented, thoracic legs
- Head and thorax compressed into anterior 1/3 of body
- May have branched or filamentous gills on abdominal segments
- 4 pairs of short ventral abdominal prolegs and no hooked anal prolegs
Order:

Trichoptera (Caddisflies)

- 2 to 30 mm long
- Body with three regions (head, thorax & abdomen) and 3 pairs of jointed thoracic legs
- Head and thorax compressed into anterior 1/3 of body
- Dorsal thoracic plates variously sclerotized
- Anal prolegs with hooks and generally short one segmented antennae
- May have branched or filamentous gills on abdominal segments
- Often build portable case or fixed retreat using bits of mineral or plant material
Order:

Coleoptera (Beetles)

- 2 to 30 mm long
- 3 body regions and 3 pairs of jointed thoracic legs

- Adults:
 - Fore-wings modified into hard shell-like elytra
 - Chewing mouth parts with well developed mandibles
Order: **Coleoptera (Beetles)**

- 2 to 30 mm long
- 3 body regions and (usually) 3 pairs of jointed thoracic legs

Larvae:
- Sclerotized head and thorax sometimes compressed into front 1/3 of body
- May have **unsegmented** terminal abdominal appendages
- No hooked anal prolegs but may have terminal hooks or spines; antennae with more than one segment
- May have abdominal gill filaments or terminal gill tuft
- Do not build cases
Family:

Chironomidae (Midges)

- 2 to 30 mm long
- Color variable; red, white, green, olive or yellowish
- *Wormlike segmented body* with well developed, sclerotized head and one pair of anterior and posterior prolegs
- May be in a tube made of fine dirt particles
Family:

Ceratopogonidae (no-see-ums)

- 3 to 13 mm long
- Very slender wormlike segmented body; pointed at both ends with a small pointed sclerotized head
- No abdominal appendages but may be a tuft of terminal abdominal hairs
Family: Tabanidae (Horse Flies, Deer Flies)

- 15 - 40 mm long
- Cylindrical segmented body pointed at both ends with girdles of low prolegs on abdominal segments
- Leathery texture
- Head usually retracted into thorax
- No siphons or posterior lobes present

Photo courtesy of Bio-DiTRL
http://bio-ditrl.sunsite.ualberta.ca/
Family:

Tipulidae (Crane Flies)

- 10 to 50 mm long
- Reduced head is usually retracted into thorax
- Membranous wormlike body may have welt like prolegs; posterior end with fleshy lobes surrounding spiracles
Family:

Culicidae (Mosquitos)

- 3 to 15 mm long
- Fused thoracic segments are wider than abdominal segments
- Well developed head with prominent setal brushes; antennae with short terminal setae
- Anal segment at angle to abdomen
- Posterior respiratory siphon usually present
Family:

Chaoboridae (Phantom Midges)

- 3 to 20 mm long
- Fused thoracic segments wider than abdomen
- Well developed head with reduced setal brushes; antennae with long terminal setae
- Anal segment at angle to abdomen
- May have posterior respiratory siphon
Family:

Simuliidae (Black Flies)

- 3 to 15 mm long
- Distinct club shaped body and well developed head with prominent labral fans (may be folded)
- One pair of prolegs may be visible behind head
- Hold fast structure at posterior end
Other *Diptera* (Other True Flies)

- May have parapods, pseudopods, prolegs, welts or other appendages, but **no jointed thoracic legs**
- Often wormlike; head may be retracted into thorax