Use of Aerial Survey Methods to Estimate Ungulate Populations in the Oil Sands Region

Simon Slater AEMERA
Background: Aerial Surveys

- Used for assessments of:
 - Population size
 - Distribution and trends
 - Impacts of harvesting, predation or other disturbance

- Environment and Sustainable Resource Development (ESRD) use for population management:
 - Important resource for aboriginal groups, hunters and outfitters
 - Set hunting allocations and track population trends
 - Wildlife Management Units (WMU)
Background: JOSM

• JOSM: Core Terrestrial Biodiversity Monitoring
• AEMERA-ESRD program provides enhanced moose and deer monitoring:
 • Survey WMUs having > 50% area within the oil sands region
 • Increase the quantity and frequency of surveys within the JOSM area
 • Use robust methods to provide improved population and density estimates
 • Support AEMERA State of the Environment Reporting
Introduction

• Traditionally aerial surveys have been flown following a modified-Gasaway survey method
• Recently wildlife biologists with ESRD have trialed Distance Sampling methods with encouraging results
 • Buckland et al. 2001, Peters et al. 2014
• JOSM surveys:
 • 2013: Modified-Gasaway
 • 2014: Distance Sampling
Methods: Modified-Gasaway

Strata

Low \(D_L \theta_L^2 \)
Med \(D_M \theta_M^2 \)
High \(D_H \theta_H^2 \)

Scale w/ Sampling Fraction

\[\hat{D} = \frac{n}{a} \]

n = number of animals
a = area sampled
Methods: Distance Sampling

\[\hat{D} = \frac{n}{2wL\hat{P}_a} \]

- \(n \) = number of animal groups
- \(2wL \) = area
- \(\hat{P}_a \) = detection function

Diagram showing perpendicular distance to transect line.
Methods: Distance Sampling

• Analysis:
 • Data analyzed using Distance 6.0 (Thomas et al. 2010)
 • Candidate models were fit to the data and assessed using goodness of fit tests
 • Final model selection based on Akaike’s Information Criterion (AIC; Buckland et al. 2001)
Methods: Comparison

• Advantages to Distance Sampling:
 • Provides equal or greater precision on density estimates (Peters et al. 2014)
 • Less flying required (no pre-stratification required)
 » Less expensive
 • Survey multiple species
 • Randomize transects to adequately cover the WMU
 • Can include other covariates and post-stratification
Gasaway Results: 2013

<table>
<thead>
<tr>
<th>WMU</th>
<th>Population Estimate</th>
<th>Confidence Limit</th>
<th>Moose Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>2,378</td>
<td>± 16.3%</td>
<td>0.30/km²</td>
</tr>
<tr>
<td>517</td>
<td>305</td>
<td>± 44.5%</td>
<td>0.06/km²</td>
</tr>
<tr>
<td>518</td>
<td>856</td>
<td>± 29.6%</td>
<td>0.07/km²</td>
</tr>
<tr>
<td>528</td>
<td>2,241</td>
<td>± 13.6%</td>
<td>0.19/km²</td>
</tr>
<tr>
<td>541</td>
<td>531</td>
<td>± 33.7%</td>
<td>0.07/km²</td>
</tr>
</tbody>
</table>
Distance Results: 2014

<table>
<thead>
<tr>
<th>WMU</th>
<th>Population Estimate</th>
<th>Coefficient of Variation</th>
<th>Moose Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>511</td>
<td>721</td>
<td>0.24</td>
<td>0.12/km²</td>
</tr>
<tr>
<td>515/651/841</td>
<td>392</td>
<td>0.18</td>
<td>0.13/km²</td>
</tr>
<tr>
<td>515/651/841 Moose</td>
<td>2,750</td>
<td>0.14</td>
<td>1.02/km²</td>
</tr>
<tr>
<td>726</td>
<td>277</td>
<td>0.24</td>
<td>0.05/km²</td>
</tr>
</tbody>
</table>
Discussion

• Survey design: Distance sampling methods provide improved density estimates and require less effort to obtain
• Moose density estimates are quite variable across the oil sands region (0.05-0.30/km²)
• Quality, quantity and frequency of completing AUS surveys is heavily weather dependent
• Immediate trend assessments difficult since surveys were last completed 7-13 years ago
Future Work

• Surveys completed in 2015: WMUs 519, 527, 503
• Develop improved methods for obtaining estimates in low density WMUs
 – Evaluate distance sampling in low density WMUs
 – Test the efficacy of infrared technology (e.g. FLIR)
• Increased frequency of ungulate surveys will support population trend reporting within oil sands region
Acknowledgements

• JOSM Program leads: Ted Nason (AEMERA), Craig Dockrill (ESRD)

• JOSM Staff: Agnieszka Sztaba, Hanna Neufeld, Scott Donker

• ESRD Staff: Aaron Foss, Allison Shepherd, Barb Maile, Bill Johnson, Brain Lucko, Brett Boukall, Dave Moyles, Delaney Anderson, Denyse Gullion, Emilee Mailes, Grant Chapman, Hannah McKenzie, Jack McNaughton, Jim Castle, Joann Skilnick, Jordan Besenski, Justin Gilligan, Kevin Downing, Kristina Norstrom, Laura MacPherson, Lyle Fullerton, Mark Heckbert, Mike Banko, Mike Russell, Nathan Webb, Nikki McKenzie, Rick Goy, Traci Morgan

• FERD Staff: Bernie Schmitte, Cody Clark, Dianne L’Heureux, Kristy Josey, Maureen Churchill, Miguel Bernard, Monette Gauthier, Nancy Sutton, Wes Nimco

• Aircraft Providers: Can-West Corporate Air Charters, Delta Helicopters, Air Jasper, Highland Helicopters, Nor-Alta Aviation, Black Swan Helicopters, Star Helicopters
Questions?